

DOMAIN-DRIVEN DESIGN IS
A DEVELOPMENT APPROACH
TO MANAGING SOFTWARE
FOR COMPLEX DOMAINS

Domain-Driven Design is a language and

domain-centric approach to software

design for complex problem domains.

The term was coined by Eric Evans in his

seminal book “Domain-Driven Design:

Tackling Complexity in the Heart of

Software”. It consists of a collection of

patterns, principles and practices that will

enable teams to focus on what is core to

the success of the business while crafting

software that manages complexity in both

the technical and business spaces.

Complexity from the
domain is inherent

Complexity from the
technical solution is

accidental

Complexity in software is the result
of inherent domain complexity

(essential) mixing with technical
complexity (accidental).

1

Initial software incarnation
fast to produce

2

Over time, without care and
consideration, software turns
into the pattern known as the

“ball of mud”

3

It works but no one knows
how. Change is risky and

difficult to complete. Where
technical complexity exists

the best developers will
spend time there and not in

problem domain

How software for complex
domains can become
difficult to manage

Eric Evans
Domain-Driven Design:
Tackling Complexity in the Heart of Software

SOLVE COMPLEX PROBLEMS BY USING MODELS

A Domain Model represents a view, not the reality, of the problem domain, it exists only to meet
the needs of business use cases. The various expressions of the model - code, diagram, docs -
are bound by the same language. Its usefulness comes from its ability to represent complex logic
and policies in the domain to solve business use cases. The model contains only what is relevant
to solve problems in the context of the application being created. It needs to constantly evolve
with to keep itself useful and valid in the face of new uses cases.

!
Don’t Stop At Your

First Good Idea
Many models must be

rejected in order to ensure
you have a useful model

for the current use cases of
a system.

"

Challenge
Your Model

With each new business case
and scenario your model will

evolve. Don’t become too
attached as it’s healthy to

attack problems in a completely
different way to reveal insights.

Don’t Model
Real LIfe

Model only what is relevant
to solve use cases.

THE DOMAIN
(THE LONDON TUBE

NETWORK)

THE DOMAIN MODEL
(THE LONDON TUBE MAP)

BOUND BY
LANGUAGE

EXPRESSED AS CODE

EXPRESSED
IN CONVERSATION

EXPRESSED AS
DOCUMENTATION

EXPRESSED
AS DIAGRAMS

The domain model is:

• An abstraction of reality –

not a reflection of real life

• Designed to manage

complexity for specific

business cases.

• A single model that exists

in code, language and

written documentation and

diagrams

The truth

THE DOMAIN MODEL

THE USE CASE
(THE PROBLEM)

I need to navigate
London’s under-
ground network

The model solves the
use case simply and

effectively

The model is an
abstraction of the

real domain, it bears
little resemblance to
the distance between

stations

An example of a domain model...

Jeff Patton
User Story Mapping

Alberto Brandolini
Event Storming

Eric Evans
DDD Whirpool

EMPLOY KNOWLEDGE CRUNCHING TECHNIQUES
TO PRODUCE EFFECTIVE MODELS

Knowledge crunching is the art of distilling relevant information from the problem domain in

order to build a useful model that can fulfil the needs of business use cases. Creating a useful
model is a collaborative experience; however, business users can also find it tiring and can
deem it unproductive. Business users are busy people. To make your knowledge crunching

session fun and interactive, you can introduce some facilitation games and other forms of

requirement gathering to engage your audience.

• ”Ignorance is the single greatest impediment to throughput” - Dan North

• “The Critical Complexity of most software projects is in understanding the

domain itself” - Eric Evans

• Knowledge is gained around whiteboards, water coolers, brainstorming, and

prototyping in a collaborative manner, with all members of the team at any time

of the project.

• Domain experts are the subject matter experts of the organization. They are

anyone who can offer insight into the problem domain (users, product owners,

business analysts, other technical teams).

• Your stakeholders will give you the requirements of your application but they

may not be best placed to answer detailed questions of the domain. Utilize

domain experts when modeling core or complex areas of the problem domain.

• Engage with your domain experts on the most important parts of a system. Don’t

simply read out a list of requirements and ask them to comment on each item.

• Plan to change your model; don’t get too attached as a breakthrough in

knowledge crunching may render it obsolete.

• Drive knowledge crunching around the most important uses case of the system.

Ask the domain experts to walk through concrete scenarios of system use cases

to help fill knowledge gaps.

Leverage
Facilitation
Patterns
to Engage
Stakeholders

• Ask powerful questions and learn the intent of the business. Don’t simply
implement a set of requirements, instead actively engage with the business; work
with them, not for them.

• Visualize your learning with sketches and event storming techniques. Visualizing
a problem domain can increase collaboration with the business experts and
make knowledge-crunching sessions fun.

• Use BDD to focus on the behavior of the application and focus domains
experts and stakeholders around concrete scenarios. BDD is a great catalyst
for conversations with the domain experts and stakeholders. It has a template
language to capture behavior in a standard and actionable way.

• Experiment in code to prove the usefulness of the model and to give feedback on
the compromises that a model needs to make for technical reasons.

• Look at existing processes and models in the industry to avoid trying to reinvent
the wheel and to speed up the gaining of domain knowledge.

• Find out what you don’t know, identify the team’s knowledge gaps early then
activate deliberate discovery. Eliminate unknown unknowns and increase domain
knowledge early.

• Leverage Eric Evans’ Model Exploration Whirlpool when you need guidance on
how to explore models. The activities in the whirlpool are particularly helpful
when you are having communication breakdowns, overly complex designs, or
when the team is entering an area of the problem domain of which they don’t
have much knowledge.

DESIGN A MODEL IN COLLABORATION
USING A UBIQUITOUS LANGUAGE

Software projects fail due to poor communication and the overhead of translation between

domain and technical terminology.

When modeling with stakeholders and
domain experts, everyone should make

a conscious effort to consistently apply a
shared language rich in domain-specific

terminology. This language must be made
explicit and be used when describing the

domain model and problem domain.

THE UBIQUITIOUS
LANGUAGE

BUSINESS
TERMINOLOGY

TECHNICAL
TERMINOLOGY

REMOVE
technical terms that

distract from the core
domain complexity and

are not used by the
domain experts

−

TECHNICAL
COLLEAGUES

ADD
concepts discovered
in code that unlock
deep insights into

the domain

+

−

+

REMOVE
business terms that are

not useful to solving
specific use cases

even if they exist in
reality

ADD
business terms that

can unlock key
insights into the

model
BUSINESS

COLLEAGUES

DEVELOPMENT
TEAM

DOMAIN
EXPERTS

Obsess
over this!!!

A Ubiquitous Language minimizes the cost of translation and binds all expressions to the code

model also known as the true model. A shared language also helps collaborative exploration

when modelling, which can enable deep insights into the domain.

DEVELOPER DOMAIN EXPERT

???
In English

please?

Order Database Message sent

on queue

Deliveries

Database

Promo service SMTP

service

OH!
I get it now

Pizza Delivered

Yes

Send a Coupon to

the Customer

DEVELOPER DOMAIN EXPERT

Don’t focus on technical details...

...talk in domain terms.

Guaranteed 30

Minute Delivery

Offer Time
Exceeded?

HOW TO IMPLEMENT YOUR MODEL
There are many tactical patterns presented in Eric Evan’s book that will guide you toward creating

a flexible and maintainable domain model. Many DDD practitioners find aggregates a useful
tactical modeling heuristic. The aggregate pattern suits both an object oriented and functional

programming style.

The area of domain model implementation has evolved greatly in the decade that has passed

since Eric Evans original wrote about DDD. DDD is technically agnostic, therefore it’s important to

understand that the implementation tactics for building domain models should remain flexible
and open to innovation.

Problem
A single object graph may closely relate to the real domain but it does not make for an
effective model. Treating the model as a single consistency boundary in a collaborative
domain can lead to conflict for changes that are completely unrelated. Such as in the auction
example below asking a question while someone is trying to place a bid.

Solution
Decompose large objects structures into smaller objects groupings called aggregates which
are based around invariants (business rules). An aggregate is a unit of consistency ensuring
transactional boundaries are set at the right level of granularity to ensure a usable application
by avoiding blocking at the database level.

Listing

Questions
& Answers Seller Shipping

Methods Description
Payment
Methods Auction

Feedback Bids

Members

Decompose into Aggregates

based on Invariants. Aligning

with transactional and

consistency boundaries.

Listing

Shipping
Methods

Payment
Methods

Description

DATA STORE

Questions
& Answers

Feedback
Seller

Auction

Bids

Members

DATA STORE

I can’t stress enough that DDD does not dictate any special architectural style or require

any special design patterns for development. Don’t get too hung up on the tactical

patterns. Make sure you understand the problem domain and isolate your domain code.

You will find that even the aggregate pattern is optional.

WRITE SOFTWARE THAT EXPLICITLY EXPRESSES
THE MODEL

“Any fool can write code that a computer can understand.
Good programmers write code that humans can understand.”
- Martin Fowler, “Refactoring: Improving the Design of Existing Code”

The ubiquitous language should be used in the code implementation of the model, with the

same terms and concepts used as class names, properties, and method names. Continuous

experimentation and exploration in the design of a model is where the power of DDD is realized

and this is enabled by using common language.

public class Guaranteed30MinuteDeliveryOffer
{

 public void After(PizzaDelivered delivery)

 {

 if (delivery.TimeTaken.Exceeded(thirtyMinutes))

 {

 sendCouponTo(delivery.Customer);

 }

 }

}

OH!
I get it now

DEVELOPER DOMAIN EXPERT

D
om

ai
n

co
nc

ep
ts

 m
ad

e
ex

pl
ic

it
 in

 t
he

 c
od

e
m

od
el

COLLABORATIVE AND CONSTANTLY
EVOLVING MODELLING

A big benefit of collaborative modelling is the constant feedback the development team gets from
the business experts. This leads to the discovery of important concepts and allows the team to

understand what is not important and can be excluded from the model. Breakthroughs in sessions

are manifested as simple abstractions that clarify complex domain concepts and lead to a more

expressive model.

ST
A

RT
 H

ER
E

%

Focus on a single
business use case

at a time and model the various
concrete scenarios for each use

case.

Create a useful model
 that satisfies the needs of the use
case. Don’t be over ambitious and

avoid perfectionism. The goal is not to
model reality, your models should be

inspired by aspects of reality.

Isolate the model
from infrastructure concerns

and keep technical complexities
separate from domain complexities.

Use application services to model
use cases and delegate to the

domain model to solve.

Don’t stop modelling at the
first useful model.

Experiment with different designs
to find a supple model and design

breakthrough. Challenge your
assumptions and look at things from

a different perspective.

Reveal hidden insights and
simplify the model

by exploring and experimenting
with new ideas. You will understand

more about the problem domain
the more you play with it.

Apply tactical design patterns
 to model the rich domain

behaviours and to ensure that the
model is supple enough to adapt as

new requirements surface.

Warning!; DDD is not a patterns
language, don’t fall into the trap

of solely focusing on tactical code
design patterns.

Before starting to model understand the technical landscape, the relationships with other
teams and other models at play.

Pizza Delivered

Guaranteed 30

Minute Delivery

Offer Time
Exceeded?

Yes

Send a Coupon to

the Customer

BOOKING CONTEXT

BUSINESS

USE CASE

BUSINESS

USE CASE

MARKETING CONTEXT

SALES CONTEXT

BUSINESS

USE CASE

DIVIDE COMPLEX AND LARGE MODELS INTO
SEPARATE BOUNDED CONTEXTS

Over time a model will lose integrity and explicitness as it; grows in complexity, multiple teams

work on it or language becomes ambiguous. If this is the case, large or complex models should

be divided into bounded contexts where a model can be explicit by being understood in a specific
context. Software that fails to isolate and insulate a model in a bounded context will often slip into

the Ball of Mud pattern.

CUSTOMER

PAYMENT
METHOD

ADDRESS

FLIGHTS

LOYALTY
PERSONA

QUOTE

MESSAGES

NOTES

NEWSLETTER
PREFERENCES

SALES CONTEXT BOOKING CONTEXT MARKETING CONTEXT

MESSAGES

QUOTENOTES

ADDRESS

FLIGHTSPAYMENT
METHOD

PERSONA

NEWSLETTER
PREFERENCESLOYALTY

Use Specific Terminology In Each Bounded Context.

Divide by
language

A Single Large Ambiguous Model

Multiple Smaller Explicit Models

CUSTOMER
LEAD

CUSTOMER
PASSENGER

CUSTOMER
SUBSCRIBER

IMPLEMENT A BOUNDED CONTEXT TO PROTECT A
DOMAIN MODEL

In order to effectively maintain the integrity of a domain model it is important that a bounded
context encapsulates the infrastructure, data store, and in some cases the user interface, whilst

exposing a set of application services to allow client and other bounded contexts to interact with

it. As with a domain model the architectural patterns used to implement bounded contexts should

be appropriate to the complexity. If you don’t have complex logic in a bounded context and a

simple model, use a simple create, read, update, and delete (CRUD) architecture. DDD does not

dictate any specific architectural style, it only requires the model to be kept isolated from technical
complexities so that it can focus on domain logic concerns.

DATA STORE

BOUNDED CONTEXT LANGUAGE BOUNDARY

Domain
model

The application service layer is the concrete
implementation of the bounded context boundary.

The job of the application services is to expose
business use cases, then orchestrate the

delegation to the model to fulfil them.

A Bounded Context protects the
Domain Model and defines the
applicability boundary.

COMPOSE BOUNDED CONTEXTS TO CREATE
APPLICATIONS

Applications can be composed of one or more bounded contexts. Where a user interface exists data can

be displayed using one of the following integration styles:

1) Authoritative/Composite: The bounded contexts owns the UI and shows only data produced by that BC,

or delegates to other bounded contexts directly for UI matters. Alternatively a thin UI delegates to several

bounded contexts.

2) Autonomous: The bounded context owns the UI but copies data from other contexts and stores a

local copy.

Communication between bounded contexts can be achieved in many ways but try and enforce physical

boundaries to enable clean models and to keep bounded contexts autonomous. A great text on

integration styles is Enterprise Integration Patterns Book by Gregor Hohpe.

USER INTERFACE

APPLICATION

BOUNDED CONTEXT A

DATA STORE

DOMAIN MODEL

BOUNDED CONTEXT B

DATA STORE

DOMAIN MODEL

BOUNDED CONTEXT C

DATA STOREDOMAIN MODEL

USER
INTERFACE

Some bounded contexts may
not have a UI. An application’s
UI maybe a composite of many
bounded contexts.

Integration Patterns enable
Bounded Contexts to
communicate

IDENTIFY AND MAP ALL MODELS AT PLAY, AND
HOW THEY RELATE TO EACH OTHER USING A
CONTEXT MAP

Integration using the
shared kernel pattern is
for contexts that have
an overlap and shared
a common model. Such
as the case in the HR
system above.

&

A context map is an important artifact; it’s responsibility is to ensure that boundaries between

various contexts of the system are designed explicitly and that each team understands the

contact points between them. A context map is not a highly detailed document created in some

kind of enterprise architecture tool, it is a high-level, hand drawn diagram that communicates a

holistic picture of the contexts in play.

EMPLOYEE MANAGEMENT
CONTEXT

PAYROLL CONTEXT

EMPLOYEE MODEL

A context map should be simple enough to be understood by domain experts and development

teams alike. As well as clearly labelling the contexts the teams understand, the diagram should

also show areas of the system that are not well understood to reflect the messy and often
unintelligible reality of the codebase.

An anticorruption layer provides

isolation for a model when

interfacing with another context.

The layer ensures integrity is

not compromised by providing

translation from one context to

another.

ROTA MANAGEMENT

LEAVE MANAGEMENT

A Context Map Should Answer:
Where is the technical debt?Where are the areas of technical risk?
What knowledge gaps do you have?

WARNING: Big Balls of
mud. They work, but
nobody knows how.
Tread carefully!

FINANCE

DISTILL LARGE PROBLEM
DOMAINS TO REVEAL THE
CORE OPPORTUNITY

In order to manage complexity in the solution space,

developers need to conquer the problem space. Not

all parts of a problem need perfect solutions. In order

to reveal where most effort and expertise should be
focused, large problem domains can be distilled. This

enables the best developers to focus attention on areas

of the problem domain that are key to the success of

the product as opposed to the areas that offer the most
exciting technical challenges.

Engaged Development team
and stakeholders

Facilitation
Patterns

What makes the system
worth writing?

What is the opportunity cost of writing
this software? Why has this project
been approved over others, what
capability or opportunity does this
application enable? Developers are
expensive, why is this project not
being outsourced, what strategic

advantage is there in having in house
developers work on this project?

Why not buy it off the shelf?
If you can’t build it cheaper, faster or
better then why build it at all? What
reason is driving your company to
develop this rather than looking at

some off the shelf software. What part
of the proposed system will enable

the business strategic? Your business
has a strategy; software helps to

enable that strategy. Understand the
benefits that this project will realize,

share the goals of the business
stakeholders.

Ask powerful questions
What does good look like? What is

the success criteria of this product?
What will make it a worthwhile

endeavor? What is the business trying
to achieve? The questions you ask

stakeholders and sponsors will go a
long way toward your understanding
of the importance of the product you
are building and the intent behind it.

Focus on the most
interesting conversations
Don’t bore domain experts and
business stakeholders by going

through a list of requirements one
item at a time. Start with the areas

of the problem domain that keep the
business up at night—the areas that

will make a difference to the business
and that are core for the application

to be a success.

Leverage Facilitation Patterns
Jeff Pattons’ user story mapping,

Alberto Brandolini’s event storming
techniques and Impact Mapping by
Gojko Adzic are three great ways to
engage stakeholders and reveal the
core of the product. (This has been
mentioned before, but learn how
to facilitate knowledge crunching

sessions, it’s very, very important!).

What parts of the system will
support the core domain?

Not all parts of the application will be
of strategic importance, some parts
will be in place to support the core

domain. Look for areas that need to
work but aren’t key to the success of

the project.

Consider allowing junior developers to sharpen

their skills or outsource the development

or integration of software for supporting

subdomains

This is what makes your software worth writing
• Attack complexity in the core opportunity.
• All interesting conversations will happen here.
• Apply the most effort here.
• Isolate the core domain from the rest of the problem
• Keep your wits about you, your core domain could change over time!

Generic subdomains can be
satisfied by off the shelve
packages, don’t waste too

much time here. This needs
to be good enough.

Don’t be distracted by
shiny technology. The
core sometimes isn’t
the most technically

challenging.

Supportive

Core

Generic

BUILD
A CAR

Supportive

A Problem in a Complex
Business Domain

THE SALIENT POINTS OF DOMAIN-DRIVEN DESIGN

To build effective and maintainable software for complex domains you need a
dedicated team of software experts working in a iterative development cycle. But
as Eric Evans observed in his book Domain-Driven Design, technical practice and
expertise will only get you so far. Without a focus on the most important parts of the
problem domain, an environment where you can collaborate with domain experts, an
obsession with a ubiquitous language and the understanding that concepts need to be
understood in context, you may end up with a ball of mud when juggling technical and
domain complexity.

FOCUS EFFORT WHERE IT MATTERS
Not all of a system will be well designed and often, it isn’t cost effective to
strive for this. Instead identify the core domain and the core complexity

and focus effort there. The core domain is the reason you are writing the
software in the first place. DDD is expensive and time consuming so use it
where it matters. Sometimes it’s better just to get on and code, rather than

looking for complexity where there is none. Not all projects will have suitable

complexity that warrants the effort of DDD. If you have an appreciation for
the problem space and an empathy for your business you will be in a better

position to judge the opportunity cost as you align effort.

DESIGN A MODEL WITHIN A BOUNDED CONTEXT
When creating a model for a large domain it can lose explicitness if there are

multiple teams involved, where different language is used or where concepts
mean different things in different contexts. Therefore, just as you distill the
problem domain to reveal multiple sub domains, you must also decompose

the solution space and develop models within explicit boundaries. Context is

everything; context and isolation ensure the integrity of your code. It reduces

cognitive load and enables multiple teams to work autonomously.

BIND EXPRESSIONS OF THE MODEL USING A
UBIQUITOUS LANGUAGE

Software projects fail due to poor communication coupled with the

overhead of translation between domain and technical terminology. A

Ubiquitous Language enables software experts to bind the code model

to other expressions of the domain model, such as conversations and

diagrams with domain experts, making for more effective communication.
Better communication gives you an increased chance to reveal deeper

insights in the model. This is why it is vital that the code model is expressed

explicitly using the Ubiquitous Language and why it’s important to obsess

over language. And remember, a language should be specific to a bounded
context.

COLLABORATE IN LEARNING AND MODELLING
Don’t underestimate the power of collaborative modelling and learning

between domain experts and software experts. Knowledge crunching is

an ongoing process; collaboration and engagement with the business

should not be constrained to the start of a project. Deep insights and

breakthroughs only happen after living with the problem through many

development iterations. Facilitation patterns to help crunch domain

knowledge are extremely important - get good at mining for information

and engaging with the business! DDD is the process of learning, refining,
experimenting, and exploring in the quest to produce an effective model. It
is often said that working software is simply an artifact of learning.

Build solutions for complex business problems more effectively
with Domain-Driven Design

This book distills the ideas and theories of the Domain-Driven Design (DDD) philosophy
into a practical playbook that you can leverage to simplify application development
for complex problem domains. A focus is placed on the principles and practices of
decomposing a complex problem space as well as the implementation patterns and
best practices for shaping a maintainable solution space. You will learn how to build
effective domain models through the use of tactical patterns and how to retain their
integrity by applying the strategic patterns of DDD. Full end-to-end coding examples
demonstrate techniques for integrating a decomposed and distributed solution space
while coding best practices and patterns advise you on how to architect applications
for maintenance and scale.

' Offers a thorough introduction to the
philosophy of DDD for professional
developers

' Simplifies the theories of Domain-
Driven Design into practical principles
and practices

' Includes masses of code and examples
of concepts in action that other books
have only covered theoretically

' Covers the patterns of CQRS,
Messaging, REST, Event Sourcing and
Event-Driven Architectures

' Ideal for developers using Java, Ruby,
and other languages who want to learn
common DDD implementation patterns

' Code examples presented in C#
demonstrating concepts that can be
applied in any language

PATTERNS, PRINCIPLES, AND PRACTICES
OF DOMAIN-DRIVEN DESIGN

BY SCOTT MILLETT & NICK TUNE

READ MORE ABOUT THE ANATOMY OF
DOMAIN-DRIVEN DESIGN AT:

HTTPS://LEANPUB.COM/ANATOMY-OF-DDD/
The goal of Domain-Driven Design is not to simply produce better
software but to enable better business outcomes

This book is a concise, practical and visual guide to the software practice of domain-
driven design. While much has been written about the tactical and strategic technical
patterns of DDD many of the practices and principles required for empathic
development have had little attention.

DDD is deceptively simple. Fundamentally DDD is about minimising the cost of
translation from problem domain to software solution. It is this area that developers
continue to struggle, and it is this area that is the focus of this book.

This book offers:

' A plain English, highly-visual overview,
introducing you to all aspects of DDD

' Facilitation patterns that empower you
to explore business domains and
discover the all-important core
domain(s)

' Collaboration techniques that help you
to become an expert in your domain’s
language & work effectively with domain
experts

' Knowledge crunching and modelling
techniques that teach you how to make
sense of your domain and accurately
model it

' Organisational design patterns that
show you how to create autonomous
teams by aligning them with the
problem domain

' Leadership guidance, advising on how
to get your whole team motivated and
involved in DDD

